
Supplementary Materials: Emergence of tunable intersubband-plasmon-polaritons in
graphene superlattices

Minwoo Jung1, ∗ and Gennady Shvets2, †

1Department of Physics, Cornell University, Ithaca, New York, 14853, USA
2School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

(Dated: January 24, 2023)

I. BOUND STATES OF DIRAC ELECTRONS IN SQUARE POTENTIAL WELLS

Here, we provide an analytical solution for bound states based on total internal reflection of electrons with Dirac
dispersion (TIREDD) in a square potential well or a square potential barrier. Suppose a square potential well
(U0 < U1) or a square potential barrier (U0 > U1) given as

UE(x) = U0 (0 < x < W ), U1 (elsewhere). (S1)

Then, we can set an ansatz for a bound state with eigenenergy E as

ψ(r) = eikyy ×


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−iα+iky
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]
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1

q+iky

(E−U0)/ℏvF

]
eiqx +B
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1

−q+iky
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]
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R

[
1

iα+iky

(E−U1)/ℏvF

]
e−αx (x > W )

, (S2)

where q =

√(
E−U0

ℏvF

)2
− k2y is the momentum along x-axis within the well/barrier, and α =

√
k2y −

(
E−U1

ℏvF

)2
is

the decaying factor outside the well/barrier. Both q and α are real; therefore, this ansatz is possible only when
|E − U1| < ℏvF ky < |E − U0|.

By imposing the continuity of ψ and the continuity of probability current J = ψ†σxψx̂ + ψ†σyψŷ, we obtain the
following condition for the eigenenergy E:

tan(qW ) =
qα

E−U0

ℏvF
E−U1

ℏvF
− k2y

. (S3)

Figure S1a shows the inverse tangent of the right hand side of the above equation. Since the right hand side is
vanisihng in most region, the bound state energy condition simply reduces to tan(qW ) ∼ 0. Therefore, we get

Ej ∼ ℏvF
√

(πj/W )2 + k2y + U0, which we discussed in the main text. Figure S1b shows that a potential barrier also

can host bound states via TIREDD of the valence band electrons, as discussed in the main text.

II. NUMERICAL METHOD FOR THE CALCULATION OF HIPP DISPERSION AND NORMAL
REFLECTION SPECTRUM

In this section, we elaborate on the numerical method used for the calculation of HIPP dispersion and normal
reflection spectrum shown in the main text. As discussed in the main text, we only consider the transverse magnetic
modes that can be described with Ex, Ez and By. Also, we consider the dispersion in the momentum along x-axis
(q = qx̂).
Recall that the metagate periodicity is L, and the width of air gaps in the metagate is S. For convenience, let’s define

several variables to describe the plane wave solutions in each of the layers—the air above all layers (A), hBN layers
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FIG. S1. a. Plotting the inverse tangent of the right hand side of Eq. (S3); U0 = −0.2eV, U1 = −0.02eV (or U0 = −0.02eV,
U1 = −0.2eV; both yield the same result), and W = 200nm (vF = 1.1 × 106m/s). b. Dispersion of bound states in ky for a
potential well (left: U0 = −0.2eV, U1 = −0.02eV) and for a potential barrier (left: U0 = −0.02eV, U1 = −0.2eV). The dased
lines refer to ℏvF ky = |E − U0| and ℏvF ky = |E − U1|.

(B), the oxide layer (O), and the substrate (S): qm = q+ 2πm
L , qω = ω

c , κ
A
m = −i

√
q2ω − q2m, κBm = −i

√
ϵBxyq

2
ω − ϵBxy

ϵBz
q2m,

κOm = −i
√
ϵOq2ω − q2m, and κSm = −i

√
ϵSq2ω − q2m, where m ∈ Z is an integer index. To describe the modes (Ex, Ez

and By) in the air gaps of the metagate (M): ηµ = πµ
S , ϕµ(x) =

√
2− δµ0 cos

[
ηµ(x− L−S

2 )
]
, and κMµ = −i

√
q2ω − η2µ,

where µ is a non-negative integer index.

Then, we can set an ansatz for the HIPP mode as below.

(i) In the air above the top hBN layer (z > ht):

cBy =
∑
m

eiqmx
(
Rme

−κA
m(z−ht) + Ime

κA
m(z−ht)

)
kωEx = −i

∑
m

eiqmxκAm

(
−Rme

−κA
m(z−ht) + Ime

κA
m(z−ht)

)
kωEz = −

∑
m

eiqmxqm

(
Rme

−κA
m(z−ht) + Ime

κA
m(z−ht)

)
.

(S4)

Here, R0 is the reflection coefficient, in the presence of the normal (q = 0) incident lght Im = δm0. An eigenmode
exists even with vanighing external drive term Im = 0.

(ii) In the top hBN layer (0 < z < ht):

cBy =
∑
m

eiqmx
(
Am cosh(κBmz) +Bm sinh(κBmz)

)
kωEx =

−i
ϵBxy

∑
m

eiqmxκBm
(
Am sinh(κBmz) +Bm cosh(κBmz)

)
kωEz =

−1

ϵBz

∑
m

eiqmxqm
(
Am cosh(κBmz) +Bm sinh(κBmz)

) (S5)
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(iii) In the bottom hBN layer (−hb < z < 0):

cBy =
∑
m

eiqmx
(
Cm cosh(κBmz) +Bm sinh(κBmz)

)
kωEx =

−i
ϵBxy

∑
m

eiqmxκBm
(
Cm sinh(κBmz) +Bm cosh(κBmz)

)
kωEz =

−1

ϵBz

∑
m

eiqmxqm
(
Cm cosh(κBmz) +Bm sinh(κBmz)

) (S6)

(iv) In the air gap of the metagate (−hb − hm < z < −hb):

cBy =
∑
µ

ϕµ(x)
(
Dµ cosh(κ

M
µ (z + hb)) + Eµ sinh(κ

M
µ (z + hb))

)
kωEx = −i

∑
µ

ϕµ(x)κ
M
µ

(
Dµ sinh(κ

M
µ (z + hb)) + Eµ cosh(κ

M
µ (z + hb))

)
kωEz = i

∑
µ

∂xϕµ(x)
(
Dµ cosh(κ

M
µ (z + hb)) + Eµ sinh(κ

M
µ (z + hb))

) (S7)

(v) In the oxide layer (−hb − hm − ho < z < −hb − hm):

cBy =
∑
m

eiqmx
(
Fm cosh(κOm(z + hb + hm)) +Gm sinh(κOm(z + hb + hm))

)
kωEx =

−i
ϵO

∑
m

eiqmxκOm
(
Fm sinh(κOm(z + hb + hm)) +Gm cosh(κOm(z + hb + hm))

)
kωEz =

−1

ϵO

∑
m

eiqmxqm
(
Fm cosh(κOm(z + hb + hm)) +Gm sinh(κOm(z + hb + hm))

) (S8)

(vi) In the substrate (z < −hb − hm − ho):

cBy =
∑
m

eiqmxHme
κS
m(z+hb+hm+ho)

kωEx =
−i
ϵS

∑
m

eiqmxκSmHme
κS
m(z+hb+hm+ho)

kωEz =
−1

ϵS

∑
m

eiqmxqmHme
κS
m(z+hb+hm+ho)

(S9)

At z = 0, we can define the dynamic electric potential field on graphene δUE from −∂x(δUE/(−e)) = Ex(z = 0),
and the dynamic carrier density oscillation δn from −eδn = Dz(z = 0+)−Dz(z = 0−)

kωδUE =
−e
ϵBxy

∑
m

κBm
qm

Bme
iqmx

kωδn =
1

e

∑
m

qm(Am − Cm)eiqmx

(S10)

Now, we match the boundary conditions (continuity of Ex and continuity of By with no free current density). At
z = 0, due to the current density at graphene, we get By(z = 0+) − By(z = 0−) = −µ0σ ∗ Ex(z = 0). Again, for
convenience, let’s define several vector/matrix notations:

{Am}, {Bm}, ..., {Im}, {Rm} → A,B, ..., I, R,
[Ct]mm′ = δmm′ cosh(κBmht), [St]mm′ = δmm′ sinh(κBmht),
[Cb]mm′ = δmm′ cosh(κBmhb), [Sb]mm′ = δmm′ sinh(κBmhb),
[Cm]µµ′ = δµµ′ cosh(κMµ hm), [Sm]µµ′ = δµµ′ sinh(κMµ hm),

[Co]mm′ = δmm′ cosh(κOmho), [So]mm′ = δmm′ sinh(κOmho),
[KA]mm′ = δmm′κAm, [KB ]mm′ = δmm′κBm/ϵ

B
xy, [KM ]µµ′ = δµµ′κMµ , [KO]mm′ = δmm′κOm/ϵ

O, [KS ]mm′ = δmm′κSm/ϵ
S ,

[Q]mm′ = δmm′qm,
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[Σ]mm′ = −iσ(qn, qm, ω), and [T ]µm = 1
S

∫
S
dxψ∗

µ(x)e
iqmx. Here, T is the basis transformation matrix (from plane

waves to the eigenmodes in the air gap). From the boundary conditions, we get:
(i) Between the air and the top hBN:

CtA+ StB = R+ I

KB(StA+ CtB) = KA(−R+ I)
(S11)

(ii) Between the top and the bottom hBN:

C −A =
1

ω
ΣKBB (S12)

(iii) Between the bottom BN and the air gap of the metagate:

D = T (CbC − SbB)

KME = T KB(CbB − SbC)

S

L
T †KME = KB(CbB − SbC)

(S13)

(iv) Between the air gap of the metagate and the oxide:

CmD − SmE = T F
KM (CmE − SmD) = T KOG

S

L
T †KM (CmE − SmD) = KOG

(S14)

(v) Between the oxide and the substrate:

CoF − SoG = H

KO(CoG− SoF ) = KSH
(S15)

From Eq. (S15), we can eliminate H to obtain

G = (KOCo +KSSo)
−1(KOSo +KSCo)F. (S16)

Then, from Eq. (S14) and Eq. (S16), we can eliminate F and G to obtain:

E = (VKMCm + Sm)−1(VKMSm + Cm)D, (S17)

where V = S
LT (KOSo +KSCo)−1(KOCo +KSSo)K

O−1T †. Further, from Eq. (S13) and Eq. (S17), we can eliminate
D and E to obtain:

C = (WCb +KBSb)
−1(WSb +KBCb)B =

[
KB−1SbCb−1 + (CbWCb +KBCbSb)

−1
]
KBB, (S18)

whereW = S
LT

†KM (VKMCm+Sm)−1(VKMSm+Cm)T or, equivalently,W = S
LT

†
[
KMSmCm−1 + (CbVCb +KM−1CmSm)−1

]
T

(the latter form makes it clear that W is a Hermitian matrix). From Eq. (S11), we can eliminate eliminate R to
obtain:

A = 2KA(KACt +KBSt)
−1I −

[
KB−1StCt−1 + (CtKACt +KBCtSt)

−1
]
KBB, (S19)

or we can eliminate A to obtain:

R = (KACt +KBSt)
−1
[
(KACt −KBSt)I −KBB

]
. (S20)

If there is no external drive input I = 0, Eq. (S18), and Eq. (S19) altogether gives:

C −A = YKBB, where

Y =
[
KB−1StCt−1 + (CtKACt +KBCtSt)

−1
]
+
[
KB−1SbCb−1 + (CbWCb +KBCbSb)

−1
]
.

(S21)
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Then, by examining Eq. (S10) and recalling the definition of the dynamic capacitance δUE(q) = e2
∑

q′ C−1(q,q′)δn(q′),
we arrive at

C−1(qm, qm′) =
[Y−1]mm′

qmqm′
= [Q−1Y−1Q−1]mm′ . (S22)

The inverse of dynamic capacitance is equal to the dynamic coulomb interaction [1–3]. It is easily checked that, in a
suspended graphene in vacuum (ht, hb → ∞, ϵBxy = ϵBz = ϵ0), the above expression reduces to the expression obtained

by taking the 2D Fourier transform of Coulomb potential e2C−1(qm, qm′) → δmm′
e2

2ϵ0|qm| . Thus, the dynamical

dielectric function given in the main text is reduced as a compact matrix form:

ϵ(q, ω) = 1− 1

ω
Q−1Y−1ΣQ = Q−1

[
1− 1

ω
Y−1Σ

]
Q. (S23)

Therefore, the density of state, which is approximated as the imaginary part of the inverse of the dynamical dielectric
function, is given as

DOS(q, ω) = −Im
[
Tr
(
[ϵ(q, ω)]−1

)]
= −Im

[
Tr

([
1− 1

ω
Y−1Σ

]−1
)]

. (S24)

This is the quantity plotted in the main text for the figure containing the HIPP dispersions.
Now, we can combine Eq. (S12), Eq. (S18), and Eq. (S19) to obtain:

R = (KACt +KBSt)
−1

[
(KACt −KBSt)− 2

(
Y − 1

ω
Σ

)−1

KA(KACt +KBSt)
−1

]
I. (S25)

As mentioned earlier, the reflection upon normal incidence is calculated as |R0|2 with Im = δm0 and q = 0.

III. HIPP DISPERSIONS UNDER A DIFFERENT SUPERLATTICE DESIGN

In this section, we show that the appearance of the hybrid intersubband-plasmon-polaritons (HIPPs) shown in the
main text is not contingent upon a specific set of parameter conditions, by providing the HIPP dispersions for a
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for visualizing

the HIPP dispersion.
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different superlattice design. In the main text, the results were shown for a system with a periodicity of L = 300nm
and the air gap width of S = 80nm. Here, in Fig. S2, we provided the same calculations for S = 150nm. For a similar
degree of UE modulation, the intersubband transition (ISBT) frequencies are slightly blue-shifted, compared to the
results in the main text, since the potential well width L − S is now deceased. Other than such small details, the
HIPP phenomenon is qualitatively the same. Therefore, the experimental verification of this HIPP emergence under
1D SL in graphene would be universally possible for nearly any choice of parameter conditions.

IV. HIPP DISPERSIONS WITH MASSIVE 2D ELECTRON GAS SYSTEMS

In this section, we show that HIPPs and ladder-like equispaced energy bands appear in massive electron systems as
well as in a massless Dirac particle system. This might sound intuitively odd, as the energy levels in a square potential

well of width W are given as Ej = π2ℏ2

2mW 2 j
2 (m is the effective mass of the electrons). But, this quadratic scaling

of energy levels is valid only when the square well is infinitely deep. Since the considered potential wells have finite
depths, the energy levels near the Fermi surface appear to be nearly equi-spaced at a high enough ky (momentum
perpendicular to the SL modulation direction). An analysis similar to the one given in the section I can be done for
a massive particle, and the bound state formation condition is given as

tan (qW ) =
qα

m
ℏ2 (2E − U0 − U1)− k2y

, (S26)

where q =
√

2m
ℏ2 (E − U0)− k2y and α =

√
k2y − 2m

ℏ2 (E − U1) (valid only when U0 + ℏ2

2mk
2
y < E < U1 + ℏ2

2mk
2
y).

Since the inverse tangent of the right hand side is a slowly-varying decreasing function in E at a given ky (it only

decreases smoothly from π to 0 as E increases from U0 +
ℏ2

2mk
2
y to U1 +

ℏ2

2mk
2
y.), the solution to the above equation

can be approximately given as Ej = ℏ2

2m [ π2

W 2 (j + ϕj)
2
+ k2y] + U0, where ϕj (the inverse tangent of the right-hand-

side of Eq. (S26) normalized by π) is smoothly decreasing from 1 to 0 as j increases. As considered in the main
text, if U0 is a deep enough negative potential, the energy levels around the Fermi surface (µ0 = 0 was assumed)
will have a sufficiently high indices j ∼ j0 ≫ 1. Then, these energy level spacings can be linearized as follows:

Ej+1 −Ej ∼ π2ℏ2

mW 2 j0(1 +
δj
j0

+ δϕj), where δj = j − j0 ≪ j0 and δϕj = ϕj+1 − ϕj . In fact, δϕj is a slightly increasing

function in j when U0 < Ej − ℏ2

2mk
2
y <

U0+U1

2 , and a slightly decreasing function when U0+U1

2 < Ej − ℏ2

2mk
2
y < U1.
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FIG. S3. Bound state solutions to Eq. (S26) for different effective masses (left: m = 0.02me, right: m = 0.05me); the square
potential well is given as U0 = −0.2eV inside the well, U1 = −0.02eV outside the well, and the width of the well is 200nm (the

same condition considered in Fig. S1). The dashed lines correspond to E = U0,1 +
ℏ2
2m

k2
y.
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FIG. S4. a The electronic subband structure is calculated along ky at a fixed kx = 0; the SL potential was assumed to be
the same as in Fig. 3 in the main text. Each vertical black bar is given as a guide to eyes for denoting a vertical transition
(∆j = 1) from an occupied state below the Fermi surface to a state above the Fermi surface, and all bars have the same length.
b Real part of the conductivity Re[σxx(q = qx̂,q′ = q′x̂;ω)] calculated for q = q′; in order to visualize the features at higher
frequencies better, we plotted ω × σxx. c Density of states or −Im

[
Tr

(
[ϵ(q, ω)]−1

)]
for visualizing the HIPP dispersion.

Therefore, the energy spacing can remain nearly constant when U0+U1

2 < Ej − ℏ2

2mk
2
y < U1 (thus, ky should not

be too high), as the change in δj
j0

(increases as j increases) gets cancelled by the change in δϕj (decreases as j

increases). Figure S3 clearly shows that the energy level spacing becomes constant at around E = 0 and at not too

high ky when U0 < 0 and |U0/U1| ≫ 1. Here, j0 will be roughly given as Ej0 ∼ 0 = ℏ2

2m [ π2

W 2 j
2
0 + k2y] + U0, therefore

j0 ∼
√

2mW 2

π2ℏ2 |U0| − W 2

π2 k2y. Thus, the energy level spacing will roughly scale as Ej+1 − Ej ∼ π2ℏ2

mW 2 j0 ∝W−1m−1/2.

Also, note that the realistic potential wells always come with a non-vertical side walls, which means that the
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FIG. S5. Reflection spectra shown in Fig. 5 in the main text are replotted with a broader frequency range. Both curves are
for VB = −9V cases; green: exact(kubo) conductivity, black: Drude conductivity.

effective well width slightly increases at higher energies. This factor also helps maintaining the energy level spacing
to be nearly constant around the Fermi surface. Figure S4(a) illustrates that the ladder-like equi-spaced energy levels
appear in massive particle systems as well. The band structures were obtained by solving the ordinary Schrodinger’s
equation under the same SL potential used in Fig. 3 in the main text. Then, the optical conductivity was obtained by
applying Eq (3) in the main text with the velocity operator v̂x = 1

i
ℏ
m∂x with the valley degeneracy ignored (gν = 1),

and the HIPP dispersion was then calculated in the same manner as elaborated above in the section II. The rest of
Fig. S4 clearly shows that the HIPP features appear in the massive electron systems. As mentioned in the main text,
we needed to set the effective electron mass to be very tiny (0.02me) to obtain an ISBT frequency similar to the one
obtained in the Dirac electron system in graphene. Higher masses would give less ISBT frequencies. Therefore, in
order to remain in the reasonable range of the ISBT frequency (at least an order of magnitude greater than the Drude
loss γ of the system), the electron mass should be relatively small. For this reason, any TMD monolayers or nitride
quantum well systems would not be suitable for this purpose, as the effective electron mass values in those systems
around around 0.2− 0.6me. We suggest gallium arsenide quantum well systems, as the effective electron mass values
in InGaAs and GaAs are around 0.04− 0.07me [4].

V. COMPARISON (DRUDE VS. EXACT) OF REFLECTION SPECTRA AT HIGHER FREQUENCY

In the main text, Figure 5B and D showed the reflection spectra only for the frequency range (1-5THz) under the
first plasmonic bandgap, in order to demonstrate the true emergent nature of HIPP signatures. Here, we provide
reflection spectra with a broader frequency range to address a few more observations. In Figure S5, we replotted
the reflection spectra for VB = −9V cases from Figure 5B and D. It is once again clear that the starred peak
based on kubo conductivity calculation has no counterpart in the reflection calculated with Drude conductivity, thus
suggesting that this HIPP resonance is completely beyond any perturbative effects. Another observation is that the
plasmonic resonance from Drude conductivity calculation (around 6THz) shows a similar oscillator strength compared
to the starred HIPP resonance. This proves the ultra-strongly coupled nature of our studied HIPPs. The additional
peak from exact(kubo) conductivity calculation at 8THz seem to correspond to the plasmonic resonance from Drude
calculation. The other peak at 10.5THz is another hybridized response, but it is hard to say if it is a completely
emergent peak; as seen in Fig. 5C in the main text, the HIPP dispersions become complex and rich at higher
frequencies, making it difficult to understand the band structure in a simple picture (as in local hybridization of an
underlying single plasmonic band and a single ISBT resonance).

VI. REFLECTIVITY MODULATION ENGINEERED BY SUBSTRATE PROPERTIES

In the main text, Figure 5D shows the reflection peaks of ∼ 3% with the oxide layer thickness of ho = 150nm
and the backgate(Si) doping density of nSi,dope = 1015cm−3. Here, we show that this reflectivity resonance feature
can be modulated by changing ho and nSi,dope, as these properties would alter the interaction time between the
incident/reflected radiation and the emergent HIPP polaritons. Much higher doping density of the silicon backgate
makes the backgate more like a metallic mirror, and also introduces more loss to the system). To elaborate more
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FIG. S6. Reflection spectra shown in Fig. 5 in the main text (VB = −9V case) are replotted with different choices of substrate
conditions ho and nSi,dope.

on the thickness part, since the free space wavelength in this frequency range is 50µm (in oxide), increasing SiO2
thickness upto 25µm would enhance the light intensity in the Fabry–Pérot resonator defined between graphene and
metallic backgate (but further increase in thickness would introduce Febri-Perot resonant peaks in the reflectivity
spectrum, which would make the spectra visually more complicated unnecessarily). In Figure S6, we plotted the
reflection spectra under different substrate properties (all assuming the same superlattice potential UE(x) obtained
by VB = −9V and ho = 150nm as in Fig. 1 of the main manuscript). Clearly, the resonance can appear in the form of
a dip instead of a peak, and also the modulation depth can be up to tens of percents (while sacrificing the sharpness).

FIG. S7. Bandgap size counts (between filled and empty states) around Fermi surface for VB = −9V case.
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VII. DENSITY OF INTER-STATE ENERGY DIFFERENCES

In the main text, Figure 3 shows the nearly uniform ISBT energy across the fermi surface via band structures.
Here, we directly estimate the oscillator strength. In order to get the contribution to the oscillator strengths of optical
resonances, we need to look at the density of “inter-state energy differences”, instead of the density of individual
state energy levels. When we calculate this density of bandgaps or inter-state energy differences between unoccupied
states above the Fermi sea and occupied states below Fermi sea (so that the transitions are possible), we obtained
Figure S7. It clearly shows a resonant enhancement at the quantized frequencies (1.9, 3.8, 5.7THz...), agreeing with
the resonant peaks shown in the conductivity plots in Fig. 4 in the main manuscript.
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